34,748 research outputs found

    An asymptotic solution of conical shells of constant thickness Progress report no. 6

    Get PDF
    Asymptotic solution of thin walled conical shell of revolution under lateral stres

    A Critical Examination of Hypernova Remnant Candidates in M101. II. NGC 5471B

    Get PDF
    NGC 5471B has been suggested to contain a hypernova remnant because of its extraordinarily bright X-ray emission. To assess its true nature, we have obtained high-resolution images in continuum bands and nebular lines with the Hubble Space Telescope, and high-dispersion long-slit spectra with the Kitt Peak National Observatory 4-m echelle spectrograph. The images reveal three supernova remnant (SNR) candidates in the giant HII region NGC 5471, with the brightest one being the 77x60 pc shell in NGC 5471B. The Ha velocity profile of NGC 5471B can be decomposed into a narrow component (FWHM = 41 km/s) from the background HII region and a broad component (FWHM = 148 km/s) from the SNR shell. Using the brightness ratio of the broad to narrow components and the Ha flux measured from the WFPC2 Ha image, we derive an Ha luminosity of (1.4+-0.1)x10^39 ergs/s for the SNR shell. The [SII]6716,6731 doublet ratio of the broad velocity component is used to derive an electron density of ~700 cm^-3 in the SNR shell. The mass of the SNR shell is thus 4600+-500 Mo. With a \~330 km/s expansion velocity implied by the extreme velocity extent of the broad component, the kinetic energy of the SNR shell is determined to be 5x10^51 ergs. This requires an explosion energy greater than 10^52 ergs, which can be provided by one hypernova or multiple supernovae. Comparing to SNRs in nearby active star formation regions, the SNR shell in NGC 5471B appears truly unique and energetic. We conclude that the optical observations support the existence of a hypernova remnant in NGC 5471B.Comment: 27 pages, 9 figures, to appear in May 2002 issue of The Astronomical Journa

    Inter- and Intra-Chain Attractions in Solutions of Flexible Polyelectrolytes at Nonzero Concentration

    Full text link
    Constant temperature molecular dynamics simulations were used to study solutions of flexible polyelectrolyte chains at nonzero concentrations with explicit counterions and unscreened coulombic interactions. Counterion condensation, measured via the self-diffusion coefficient of the counterions, is found to increase with polymer concentration, but contrary to the prediction of Manning theory, the renormalized charge fraction on the chains decreases with increasing Bjerrum length without showing any saturation. Scaling analysis of the radius of gyration shows that the chains are extended at low polymer concentrations and small Bjerrum lengths, while at sufficiently large Bjerrum lengths, the chains shrink to produce compact structures with exponents smaller than a gaussian chain, suggesting the presence of attractive intrachain interactions. A careful study of the radial distribution function of the center-of-mass of the polyelectrolyte chains shows clear evidence that effective interchain attractive interactions also exist in solutions of flexible polyelectrolytes, similar to what has been found for rodlike polyelectrolytes. Our results suggest that the broad maximum observed in scattering experiments is due to clustering of chains.Comment: 12 pages, REVTeX, 15 eps figure

    Feedback local optimality principle applied to rocket vertical landing VTVL

    Get PDF
    Vertical landing is becoming popular in the last fifteen years, a technology known under the acronym VTVL, Vertical Takeoff and Vertical Landing [1,2]. The interest in such landing technology is dictated by possible cost reductions [3,4], that impose spaceship’s recycling. The rockets are not generally de- signed to perform landing operations, rather their design is aimed at takeoff operations, guaranteeing a very high forward acceleration to gain the velocity needed to escape the gravitational force. In this paper a new control method based on Feedback Local Optimality Principle, named FLOP is applied to the rocket landing problem. The FLOP belongs to a special class of optimal controllers, developed by the mechatronic and vehicle dynamics lab of Sapienza, named Variational Feedback Controllers - VFC, that are part of an ongoing research and are recently applied in different field: nonlinear system [5], marine and terrestrial autonomous vehicles [6,7,8], multi agents interactions and vibration control [9, 10]. The paper is devoted to show the robustness of the nonlinear controlled system, comparing the performances with the LQR, one of the most acknowledged methods in optimal control

    Perfect State Transfer: Beyond Nearest-Neighbor Couplings

    Full text link
    In this paper we build on the ideas presented in previous works for perfectly transferring a quantum state between opposite ends of a spin chain using a fixed Hamiltonian. While all previous studies have concentrated on nearest-neighbor couplings, we demonstrate how to incorporate additional terms in the Hamiltonian by solving an Inverse Eigenvalue Problem. We also explore issues relating to the choice of the eigenvalue spectrum of the Hamiltonian, such as the tolerance to errors and the rate of information transfer.Comment: 8 pages, 2 figures. Reorganised, more detailed derivations provided and section on rate of information transfer adde
    • …
    corecore